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Abstract. Riesz potentials of a function are defined as fractional powers of the

Laplacian. Asymptotic expansions for x → ±∞ are derived for the Riesz potentials

of the Airy function Ai(x) and the Scorer function Gi(x). Reduction formulas are

provided that allow to compute Riesz potentials of the products of Airy functions

Ai2(x) and Ai(x)Bi(x), where Bi(x) is the Airy function of the second type, via the

Riesz potentials of Ai(x) and Gi(x). Integral representations are given for the function

A2 (a, b; x) = Ai (x − a)Ai (x − b) with a, b ∈ R, and its Hilbert transform. Combined

with the above asymptotic expansions they can be used for obtaining asymptotics

of the Hankel transform of Riesz potentials of A2(a, b; x). The study of the above

Riesz fractional derivatives can be used for establishing new properties of Korteweg-de

Vries-type equations.
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1. Introduction

It is well known that fundamental solutions of equations of the Korteweg-de Vries (KdV

henceforth) type are expressed in terms of the Airy function of the first type Ai(x).

Indeed, the fundamental solution of the linearized Cauchy problem for the classical

Korteweg-de Vries equation,

ut + uxxx = −
(
u2
)

x
,

can be written in the form

E0(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
.

It was shown in [1] that for the close relative of KdV, the Ostrovsky equation,

ut + uxxx = γ
∫ x

−∞
u dy −

(
u2
)

x
,
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where γ = const > 0 is the rotation parameter, the corresponding fundamental solution

can be represented in the form

E(x, t) = − 1
3
√

3t

d

dx

∫ ∞

0
Ai

(
x + y

3
√

3t

)
J0

(
2
√

γty
)

dy

=
1

3
√

3t
Ai

(
x

3
√

3t

)
−

√
γt

3
√

3t

∫ ∞

0
Ai

(
x + y

3
√

3t

)
J1 (2

√
γty)√

y
dy,

(1)

where Jν(x) is the Bessel function of order ν.

Riesz potentials (sometimes also called Riesz fractional derivatives) of fundamental

solutions are of great importance in studying global solvability, properties and the

long-time behavior of the corresponding Cauchy problems (see [2, 3, 4, 5] and the

references therein). In the current paper we are concerned with obtaining asymptotic

expansions as x → ±∞ of the Riesz potentials of the Airy function Ai(x) and the

Scorer function Gi(x) = −HAi(x), where H is the Hilbert transform (see (5) below).

Riesz fractional derivatives of these functions of order α = 1/2 stand out as the highest

Riesz potentials that are still uniformly bounded on the whole real axis (see [2, 3]).

Moreover, all semi-integer derivatives of Ai(x) and Gi(x) can be expressed in terms of

the products of Airy functions (see [5]). We also provide formulas that allow one to

obtain asymptotic expansions of the products of Airy functions Ai(x)Bi(x), Ai2(x) and

Ai (x − a) Ai (x − b) with a, b ∈ R. Here Bi(x) is the Airy function of the second type.

The next statement was proved in [6]. It provides reduction formulas that allow to

compute Riesz potentials of the products of Airy functions once Dα
xAi(x) and Dα

xGi(x)

are known.

Theorem 1 Riesz fractional derivatives of the products of Airy functions have the

following representations for α > −1/2 and x ∈ R:

Dα
x

{
Ai2(x)

}
= kα

[(
Dα−1/2Ai

) (
22/3x

)

−
(
Dα−1/2Gi

) (
22/3x

)] (2)

and

Dα
x {Ai(x)Bi(x)} = kα

[(
Dα−1/2Ai

) (
22/3x

)

+
(
Dα−1/2Gi

) (
22/3x

)]
,

(3)

where

kα =
22(α−1)/3

√
2π

. (4)

2. Definitions

The Fourier transform of the function f : R → R is defined by the formula

f̂(ξ) = F {f} (ξ) =
∫ ∞

−∞
e−iξxf(x) dx
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and the inverse Fourier transform by

f(x) = F−1
{
f̂
}

(x) =
1

2π

∫ ∞

−∞
eiξxf̂(ξ) dξ.

Introduce the Hankel transform of the function f by the formula (see [7, p. 316])

f̃(k) = Hx→k {f} (k) =
∫ ∞

0
f(x)Jm(kx)x dx

and the corresponding inverse transform by

H−1
k→x

{
f̃
}

(x) =
∫ ∞

0
f̃(k)Jm(kx)k dk.

Introduce the Hilbert transform of the function f by the formula (see [8, p. 120])

H {f} (x) =
1

π
P.V.

∫ ∞

−∞

f(y)

y − x
dy, (5)

where x ∈ R and P.V. denotes the Cauchy principal value of an integral. Notice that

this definition differs by the opposite sign from the convolution-type definition of [9,

p. 26]. According to our choice of the Fourier transform, (̂Hf)(ξ) = i sgn(ξ)f̂(ξ). One

can see that H2 = −I on Lp(R), p ≥ 1, where I is the identity operator.

For x ∈ Rn Riesz potentials are defined via the Fourier transform (see [9, p. 117]

and [10, p. 88])
(
(−∆)α/2 f

)∧
(ξ) = |ξ|αf̂(ξ). (6)

For α, x ∈ R define the Riesz potentials by

Dα
x {f(x)} =

1

2π

∫ ∞

−∞
|ξ|αf̂(ξ)eiξx dξ, (7)

provided that the integral in the right-hand side exists. Notice that for any a > 0

Dα
x {f(ax)} = aαDα

y {f(y)} |y=ax. (8)

Introduce the function

A2(a, b; x) = Ai (x − a) Ai (x − b) . (9)

This function appears in the studies of the Gelfand-Levitan-Marchenko equation (see

[11, p. 408]), the second Painlevé equation (see [12, p. 134]) and the limit at the “edge of

the spectrum” of the level spacing distribution functions obtained from scaling random

models of Hermitian matrices in the Gaussian Unitary Ensemble ([13] and [14]).

3. Asymptotic expansions of Riesz potentials of the Airy and Scorer

functions for x → +∞

The Riesz potentials of Ai(x) and Gi(x) can be written as

Dα
xAi(x) = ℜF (x), Dα

xGi(x) = ℑF (x), (10)

where ℜf and ℑf denote the real and imaginary parts of f , respectively, and

F (x) =
1

π

∫ ∞

0
ξαei(xξ+ 1

3
ξ3) dξ. (11)
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O

√xi

Re ξ

Im ξ

Figure 1. Modification of the path of integration giving the integral in (14) and an

integral that is exponentially small.

Theorem 2 The following asymptotic expansions hold for α > −1 and x → +∞:

Dα
xAi(x) ∼ cos (π(α + 1)/2)

π xα+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

1

x3k
, (12)

where α 6= 0, 2, 4 . . ., and

Dα
xGi(x) ∼ sin (π(α + 1)/2)

π xα+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

1

x3k
, (13)

where α 6= 1, 3, 5 . . ..

Proof We use a representation of the integral in (11) similar to the one for Gi(x) in

(3.18) of [15]. To do so, notice that the exponential function in the integrand in (11)

has a saddle point at ξ = i
√

x. We integrate from the origin to this saddle point, and

from there to ∞, inside the valley at ∞ exp(πi/6). The latter part can be neglected,

because it is exponentially small compared with the first part. Therefore we have for

large positive x

F (x) =
e

1

2
πi(α+1)

π

∫ √
x

0
vαe−xv+ 1

3
v3

dv + O
(
xαe−

2

3
x3/2

)
. (14)

The asymptotic expansion follows from applying Watson’s lemma (see [16, pp. 112–116]).

We expand exp(1
3
v3) =

∑
v3k/(3k k!), and integrate termwise (replacing the upper limit

of the interval by ∞). As a result we obtain

F (x) ∼ e
1

2
πi(α+1)

π

∞∑

k=0

1

3k k!

∫ ∞

0
vα+3ke−xv dv. (15)

Evaluating these integrals we get

F (x) ∼ e
1

2
πi(α+1)

π xα+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

1

x3k
, x → +∞. (16)

Taking the real and imaginary parts of the last expression we deduce (12) and (13).

Remark. In order to recover the known asymptotic expansions for α = 0, 1, 2, . . . we

need to complement (12) and (13) with the corresponding exponentially decaying terms

from (14), that is the real and imaginary parts of the integral from i
√

x to ∞ exp(πi/6).
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4. Asymptotic expansions of Riesz potentials of the Airy and Scorer

functions f for x → −∞

Theorem 3 The following asymptotic expansions hold for x → −∞:

Dα
xAi(x) ∼

|x| 12α− 1

4 cos
(

1
4
π − 2

3
|x|3/2

)

√
π

−
|x| 12α− 1

4 sin
(

1
4
π − 2

3
|x|3/2

)
(12α2 − 24α + 5)

√
π48|x|3/2

+
cos

(
1
2
π(α + 1)

)

π |x|α+1

[
Γ(α + 1) − Γ(α + 4)

3|x|3 + O
(

1

|x|6
)]

(17)

and

Dα
xGi(x) ∼

|x| 12α− 1

4 sin
(

1
4
π − 2

3
|x|3/2

)

√
π

−
|x| 12α− 1

4 cos
(

1
4
π − 2

3
|x|3/2

)
(12α2 − 24α + 5)

√
π48|x|3/2

−
sin

(
1
2
π(α + 1)

)

π |x|α+1

[
Γ(α + 1) − Γ(α + 4)

3|x|3 + O
(

1

|x|6
)]

.

(18)

Proof We write

F (−x) =
1

π

∫ ∞

0
ξαei(−xξ+ 1

3
ξ3) dξ, (19)

and assume that in the proof x → +∞. For the integral (19) there is a positive stationary

point at ξ =
√

x, which gives a contribution to the asymptotic expansion, but there is

also a contribution from the origin. To handle both contributions, we replace the original

path of integration by two new contours, giving two integrals F (−x) = F1(−x)+F2(−x),

where Fj are defined by

F1(−x) =
1

π

∫ −i∞

0
ξαei(−xξ+ 1

3
ξ3) dξ,

F2(−x) =
1

π

∫ ∞eπi/6

−i∞
ξαei(−xξ+ 1

3
ξ3) dξ.

(20)

So, the contour for F2 runs from the valley at −i∞ to the valley at ∞ exp(πi/6),

and we can take the contour through the saddle point at ξ =
√

x. See Figure 2.

For F1 we integrate by setting ξ = −iv, v > 0 and obtain

F1(−x) =
e−

1

2
i(α+1)

π

∫ ∞

0
vαe−(xv+ 1

3
v3) dv. (21)

Proceeding as for the integral in (14) we deduce that

F1(−x) ∼ e−
1

2
πi(α+1)

π xα+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

(−1)k

x3k
, (22)

as x → +∞.
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Im ξ

Re ξ
√x

O

Figure 2. Modification of the path of integration giving the integrals in (20).

For F2 we first write ξ =
√

xη, which gives

F2(−x) =
x

1

2
(α+1)

π

∫ ∞eπi/6

−i∞
ξαe−x

√
x φ(η) dη,

φ(η) = i
(
η − 1

3
η3
)

.

(23)

We have φ(1) = 2
3
i and φ′′(1) = −2i. Performing the transformation

φ(η) = φ(1) +
1

2
φ′′(1)w2,

that is

w2 =
2

3
− η +

1

3
η3 =

1

3
(η + 2)(η − 1)2,

w =
√

(η + 2)/3(η − 1),
(24)

We integrate in the neighborhood of the saddle point at w = 0 along the straight line

through the origin which has an angle of 1
4
π with the positive w−axis. This yields

F2(−x) =
x

1

2
(α+1) e−

2

3
x
√

xi

π

∫ ∞eπi/4

∞e−3πi/4

f(w)eix
√

xw2

dw, (25)

where

f(w) = ηα dη

dw
.

We expand f(w) =
∑∞

k=0 ckw
k and deduce that

F2(−x) ∼ x
1

2
(α+1) e−

2

3
ix
√

x

π

×
∞∑

k=0

c2k

∫ ∞eπi/4

∞e−3πi/4

w2keix
√

xw2

dw.
(26)
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To evaluate the integrals we set w = teiπ/4. This yields

ei( 1

4
+ 1

2
πk)
∫ ∞

−∞
t2ke−x

√
xt2 dt

= ei( 1

4
π+ 1

2
πk)Γ

(
k +

1

2

)
x− 3

2
(k+ 1

2
).

(27)

So, we finally obtain

F2(−x) ∼ x
1

2
α− 1

4 e
1

4
πi− 2

3
ix
√

x

π

∞∑

k=0

c2k

ik Γ(k + 1
2
)

x
3

2
k

, (28)

as x → +∞. A few first coefficients are

c0 = 1, c2 =
1

24

(
12α2 − 24α + 5

)
. (29)

Taking the real and imaginary parts of (21) and (28) we obtain (17) and (18).

5. Applying the asymptotic results

The next statement was proved in [17].

Theorem 4 The following representation holds for x ∈ R, a, b, ω1, ω2 ∈ R and

ω1, ω2 6= 0:

Ai
(

x − a

ω1

)
Ai

(
x − b

ω2

)
= − 2

Ω1

∫ ∞

0
J0 (2 (Ω2x + B) η)

× d

dx

[
Ai2

(
Ω1x − A + η2

)]
η dη,

(30)

where

Ω1 =
ω1 + ω2

2ω1ω2

, Ω2 =
ω2 − ω1

2ω1ω2

,

A =
aω1 + bω2

2ω1ω2

, B =
bω1 − aω2

2ω1ω2

.
(31)

We list here several important corollaries that allow us to get the Hankel transforms of

the function A2(a, b; x) and its Riesz fractional derivatives. Notice that

Ai (x − a) Ai (x − b) = Ai (x − Y − Z)Ai (x − Y + Z) ,

where

Y =
a + b

2
and Z =

b − a

2
. (32)

Corollary 1 The following formulas hold for x ∈ R and a, b ∈ R:

A2(a, b; x) = −2
d

dx

∫ ∞

0
Ai2

(
x − Y + η2

)
J0 (2Zη) η dη (33)

and

−Hx {A2(a, b; x)} = −2
d

dx

∫ ∞

0
Ai
(
x − Y + η2

)

×Bi
(
x − Y + η2

)
J0 (2Zη) η dη.

(34)
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Proof Evidently, (33) is a particular case of (30) when ω1 = ω2 = 1. Taking the Hilbert

transform of (33) with respect to x yields (34).

Corollary 2 For α, a, b ∈ R Riesz fractional derivatives of the function A2(a, b; x)

are given by the formula

Dα
x {A2(a, b; x)} =

−22(α−1)/3

√
2π

d

dx

∫ ∞

0

[(
Dα−1/2

x Ai
) (

22/3
(
x − Y + η2

))

−
(
Dα−1/2

x Gi
) (

22/3
(
x − Y + η2

))]
J0 (2Zη) η dη

(35)

and

H {Dα
x {A2(a, b; x)}} =

22(α−1)/3

√
2π

d

dx

∫ ∞

0

[(
Dα−1/2

x Ai
) (

22/3
(
x − Y + η2

))

+
(
Dα−1/2

x Gi
) (

22/3
(
x − Y + η2

))]
J0 (2Zη) η dη,

(36)

where the integrals in the right-hand sides exist at least in the sense of distributions.

Proof Follows from (33) and (34).

Corollary 3 The following relations hold for α > −1
2
:

2HZ→ζ

{
Dα−1

x (Ai(x − Z)Ai(x + Z))
}

= kα

[
Dα−1/2Ai (X) + Dα−1/2Gi (X)

] (37)

and

2HZ→ζ

{
Dα−1

x Hx (Ai(x − Z)Ai(x + Z))
}

= kα

[
Dα−1/2Ai (X) − Dα−1/2Gi (X)

]
,

(38)

where kα is defined by (4) and X = 22/3
(
x + 1

4
ζ2
)
.

Combining the asymptotic expansions (12), (13), (17) and (18) and Corollary 3 we

can obtain asymptotic expansions of the Hankel transforms (37) and (38) for x → ±∞
or ζ → ∞.
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